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Abstract 

'Symmetrized' components are introduced in place of 
the standard ones to improve the method presented in 
paper I [Fumi & Ripamonti (1980). Acta Cryst. A36, 
535-551]. These components, which are simply related 
to the standard ones, allow a further reduction of the 
computational task and also a further simplification of 
the results and of their use. This is illustrated by 
application to general two-dimensional tensors of ranks 
6 and 8 and by particularization of the results to the 
cases of the third- and fourth-order elastic tensors. 

Introduction 

In this paper we introduce symmetrizations in tensor 
space with respect to the standard reference directions 
x and y, perpendicular to the principal symmetry axis 
along the z direction, to improve the method presented 
in paper I (Fumi & Ripamonti, 1980a). From I such 
symmetrizations allow a further splitting of a tensor 
invariant in group 3(3z) into independent subtensors: 
this splitting is additional to the standard ones (see I, 
§ 3b) already exploited by the method and concerns 
only subtensors of even rank in x and y. 

* Supported in part by a NATO Research Grant. Part of the 
'Tesi di Perfezionamento in Fisica' to be submitted by C. Ripamonti 
to the University of Genoa. 

t We refer the reader to Paper I (Fumi & Ripamonti, 1980a) for 
the details of the method and for the pertinent notations. 

1. Symmetrized components 

(a) Definition and splitting 

For subtensors of even rank in x and y, we introduce 
symmetrizations with respect to x,y exchange by 
defining 'symmetrized components' as follows: 

c + = c + ? (1)  

and 

c - = c - Y  (2) 

for every pair of standard components c and ? related 
by an x,y exchange. From the identity - except for sign 
- of the coefficients of c and ? in the tensor invariants 
for group 3(3z) in Hermann's base [see I, § 3c and 
Appendix (iii)], it follows that the c+'s and c-'s have 
non-zero coefficients only in disjoint sets of invariants 
as follows: 

c+'s of even rank in x 
and in y (even parity 
in x and in y), 

Re-type invariants of 
the n+ = n_ mod 4 
subtype 

c-'s of even rank in x 
and in y, 

Re-type invariants of 
t h e n + 4 : n  mod4 
subtype 

c+'s of odd rank in x 
and in y (odd parity 
in x and in y), 

Im-type invariants of 
the n+ 4: n_ mod 4 
subtype 

c-'s of odd rank in x 
and in y, 

Im-type invariants of 
the n+ = n_ mod 4 
subtype. 

(3)  

(4) 

(5)  

(6) 
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In terms of the numerical vector representation of the 
components, provided by their coefficients in a com- 
plete set of invariants, this means that the c+'s and c-'s 
belong to independent subtensors. 

By symmetrization with respect to x,y exchange, we 
have thus split each subtensor of even rank in x and y 
with given parity in these indices into two 'sym- 
metrized' subtensors identified - according to their 
parity and + , -  symmetrization - by the sets of 
invariants given in (3) to (6). 

Symmetrized components are almost as suitable for 
practical uses as standard components: owing to their 
simple relationships, they can easily be transformed to 
standard ones, or they may even be used directly. This 
is not the case for other non-standard components (see 
e.g. Hermann, 1934; Jahn, 1937; Sirotin, 1961), which 
are defined through generally complex multiterm 
combinations, depending on the rank, and thus require 
in practical use laborious retransformation to the 
standard ones. 

(b) Advantages 
Owing to this additional splitting, the symmetrized 

components further simplify the application of the 
method given in I and the form of the ensuing results 
for general tensors. 

This splitting greatly reduces the computational task 
involved in the method by reducing the dimensions of 
the numerical vector representations used to obtain the 
resolvent vector equations. Thus at rank 6 one needs to 
solve only four equations, two of which are coupled, 
instead of nine equations, of which a set of four, a set of 
three and a set of two are coupled; and at rank 8 one 
needs to solve only nine equations, of which two sets of 
three and one set of two are coupled, instead of 21 
equations, of which a set of seven, a set of six, a set of 
five and a set of three are coupled. One should 
emphasize that the labour time of solution of these 
systems of coupled equations increases with the cube of 
the number of equations. 

Reduced dimensions of the vector representations 
imply also a formal simplification of the results, 
because of the corresponding reductions in the number 
of terms in the final expressions. 

(c) Uses 
Owing to their simple connection to standard 

components, symmetrized components can be used 
almost as standard ones, both in the procedural 
application of the method given in I and in the practical 
application of the results. 

For a given symmetrized subtensor, a symmetrized 
component c ± is equivalent to the standard component 
¢ used to denote it. This is so because of their identical 
representation in terms of their coefficients in the 
appropriate set of invariants specified in (3) to (6). 
Thus, since the method given in I applies separately to 
each symmetrized subtensor, by using e in place of c +, 
one can still use the pragmatic rules given in I. The only 
exception is the rule (see I, 8 3g, second part) used to 
halve the number of applications of the method by 
exploiting a correspondence between subtensors of 
even and odd parity in x and in y, since this rule 
involves two symmetrized subtensors. Here the actual 
two-term nature of a symmetrized component implies 
an additional exchange of + , -  symmetrization, owing 
to the term ending in y. 

2. Methodological summary 

In view of the application in 8 3, we summarize the 
main features of the method given in I, with special 
reference to symmetrized components.* 

We recall that the method applies separately to each 
symmetrized subtensor, and exploits the existence of 
sets of permutationally connected components (see I, 
88 3d and 3g, first part) to which we now refer as 
(permutational) equivalence classes of components. 
The steps are as follows: 

(I) Identification of the equivalence classes of 
independent components - by correspondence with the 
equivalence classes of tensor invariants. 

(II) For each equivalence class of dependent com- 
ponents, expansion of an arbitrary component into 
symmetrized combinations of independent ones. After 
identification of the pertinent symmetrized com- 
binations, this step is accomplished by determination of 
the expansion coefficients: to this end, one uses a 
numerical representation of the components in the 
expansion, which transforms the formal expansion 
into a numerical vector equation, providing a set of 
equations for the expansion coefficients. 

The pertinent instructions are the following: 
(i) The tensor invariants in step I are the invariants 

in Hermann's base given by 

n+ = n_ mod 3 (7) 

(see I, 8 3c, equation 2) and by the selection rule for the 
pertinent symmetrized subtensor [ (3) to (6)]; 

(ii) The correspondence in step I is the index 
correspondence given by 

+ ~ x ,  - ~ y  (8) 

over all indices but the last (left free to fix the pertinent 
parity); 

(iii) Symmetrized combinations in step II are ob- 
tained by summing over each subset of independent 
components which are related through a symmetry 
permutation of the component to be expanded; 

* The reader will notice some differences in the rules given here 
and in I. The rules given here are convenient for c -+ components. 
while the rules given in I are convenient for the standard 
components. 
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(iv) Numerical representation in step II is the 
contravariant correspondence (see I, § 3c) given by: 

c~+>[k,~, . . . . .  ko, ~, ...,ko,,,], (9) 

where e,, is a component in the expansion, k,,tLis the 
coefficient of c,, in the invariant i/3, i~ is an invanant in 
(i) corresponding by (ii) to any (independent) com- 
ponent in a symmetrized combination in (iii), n is the 
number of pertinent symmetrized combinations, and 
k,,~ is given by 

k,~ = (i)ny(-1) no, (10) 

where ny is the number of y indices in co,, n c is the 
number of y ++ - index correspondences between c,~ 
and i~. 

We recall that expansions of dependent components 
in the same equivalence class follow from the expansion 
in step (II) by pertinent permutations (see I, § 3g, first 
part). We also recall that the actual application of the 
method is limited to the subtensors of even parity, 
owing to the correspondence between symmetrized 
subtensors of different parity: 

(e' x)~ +>(c' y)o ~ 
(11) 

(c' y)~ ~ - ( c '  x)o~ 
where the parity (e,o) and the symmetrization (+ , - )  are 
explicitly shown, and c' stands for all indices but the 
last. 

To exploit the correspondence (11) we sys- 
tematically limit permutational equivalence to all 
indices but the last. [Owing to (11) permutational 
equivalence cannot extend over all indices in both the 
corresponding symmetrized subtensors.] 

3. Application to general tensors of ranks 6 and 8 in 
two dimensions 

We illusfrate the effectiveness of symmetrized com- 
ponents in simplifying both the computational task and 
the form of the results, by working out the general 
tensors of ranks 6 and 8 in x and y (see I, § 3h). We 
give a detailed application only for the c + and c- 
subtensors of even parity of rank 6, as this example is 
sufficiently general to illustrate the main procedural 
points. For the symmetrized subtensors of rank 8 we 
give only the essential steps schematically. 

(A) Tensor o f  rank  6 in x , y  

This tensor consists of 26 = 64 components which 
we split into the four symmetrized subtensors and 
group into the permutational equivalence classes as 
follows: 

even parity e+: x x x x x x + ;  ( x x x x y )  y +, 5; (xxxyy)  x +, 1,0 

(12) 

even parity c-: x x x x x x - ;  ( x x x x y ) y - ,  5; ( x x x y y ) x - ,  10 

(13) 

odd parity e + :xxxxxy+;  ( x x x x y ) x  +, 5; ( x x x y y ) y  +, 10 

(14) 

odd parity c-  : x x x x x y - ;  ( x x x x y ) x - ,  5; (xxxyy)  y - ,  10. 

(15) 

Owing to the correspondence (11) we apply the method 
only to the even-parity subtensors. 

Even-pari ty  e + subtensor 

(I) Identification of the equivalence classes of 
independent components. 

By (7) and (3) the invariants are: 

Re(+ + + - - - ) - - ,  10 (16) 

and by the index correspondence (8) the independent 
components are: 

( xxxyy )  x +, 10 (17) 
• '.. 

where the last index is fixed according to parity. 
(II) Expansion of one dependent component of each 

equivalence class into symmetrized combinations of 
independent ones. 

(a) x x x x x x  +. By (iii) there is only one symmetrized 
combination of independent components because all 
the permutations are symmetry permutations of 
XXXXXX + ' 

I 0  

.~92.~3333x + * ( 1 8 ) 

and the formal expansion is therefore 

1 0  

x x x x x x  + = e Yddc~x +. (19) 

By (iv), the numerical representation is 

10 
x x x x x x +  ~[1],22dc~yx++-~-[6 - 4] = [21, (20) 

where we have summed the representatives of the 
10 

components in 2.~.~3335x +, and the representatives have 
been computed through (10) from the invariant 
Re + + + - - - ,  corresponding by (8) to the indepen- 
dent component x x x y y x  ÷. By (20) the formal expan- 
sion (19) transforms into the numerical equation for c: 

Ill--e[21 (21) 

yielding c = ½, or 

10 
x x x x x x  + = ½ kYdcypx +. (22) 

* Short bars over indices denote symmetrization on these indices, 
i.e. summation over their distinct permutations: the number above 
the component is the number of terms in the sum (see I, p. 543, 
footnote II). 
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(b) xxxxyy +. By (iii) there are two symmetrized 
combinations since only the permutations of the first 
four indices are symmetry permutations of xxxxyy+: 

4 6 
2YcYcf?yx + and 2cYcf?~xx + (23) 

and the formal expansion is thus 

4 6 

xxxxyy + = cl fJdcf;yx + + c2fdcfi$;xx +. (24) 

By (iv) - with reference to the invariants 
Re + + + - - - - -  and Re + + - - + -  and using ( 1 0 ) -  we 
find the following numerical representation of the terms 
in (24): 

xxxxyy + ~ [ -  1, 1 ] 

4 

22c2~yx++->-[3 -- 1, 2 -- 2] = [2, 0l (25) 

6 
2Ycyyxx++-~[3 -- 3, 4 -- 21 = [0, 2], 

where we have summed the numerical vectors of all the 
components in each symmetrized combination. By (25) 
the formal expansion (24) transforms into the 
numerical vector equation 

[:1 [°l  26, = e l  0 + C 2  2 

yielding c x = - I ,  c2 = I, or 

4 6 

xxxxyy += --12Yc2fiyx + + lYcYc$'$'xx +. (27) 

yielding e = - 1, or 

xxxxyy-  = - x x x x x x - .  ( 31) 

By permutation 

xxxyyx -  = - x x x x x x - .  (32) 

The work is now completed and we can write down 
at once - using (22), (27), (31) and (32) - all the 
expressions of the general tensor of rank 6 as follows: 

Even parity in x and in y 

lO 
xxxxxx+ = Ixxxy) ?x+, 1 (33a) 

4 6 
(xxxxy)y  + =- t (2Yc2~y)x  + + 1(~Yc~x)x +, 5 (34a) 

(xxxxy) y -  = - x x x x x x - ,  5 (35a) 

( xxxyy) x -  = - x x x x x x - ,  10. (36a) 

Odd parity in x and in y 

10 
xxxxxy -  = 122¢2~Y-, 1 (33b) 

4 6 

(xxxxy) x -  = t(YcYdcfiy) y -  - 1 (Ydc~x )  y -  , 5 (34b) 

(xxxxy) x + = xxxxxy  +, 5 (35b) 

Even-parity c- subtensor 

(I) According to (7) and (4) there is only the 
invariant Re + + + + + + and by (8) we take x x x x x x -  
as independent component. 

(II) Since there is only one independent component, 
obviously there are no symmetrized combinations to be 
constructed. Furthermore, owing to the (unusual) 
permutational symmetry of this component on all 
indices, it is sufficient to work out the expansion of one 
dependent component of the equivalence class 
(xxxxy)y- ,  e.g. xxxxyy- ,  since the expansion of any 
dependent component of the equivalence class 
(xxxyy)x - ,  e.g. xxxyyx- ,  follows by the pertinent 
permutation. 

By (iii) the formal expansion of xxxxyy-  reads 
simply 

xxxxyy-  = c xxxxxx - .  (28) 

By (iv) the numerical representation with respect to 
Re + + + + + +  is 

xxxxyy-  ~ [ -  1 ], x x x x x x -  ~ [ 1 ]. ( 29) 

By (29), (28)becomes 

[-11 =t i l l  (30) 

(xxxyy) y+ = - x x x x x y  +, 10. (36b) 

In writing these results, we have used the corre- 
spondence (11) to obtain the odd-parity expressions, 
and the relation among the expressions of dependent 
components in the same equivalence class. 

(B) Tensor of  rank 8 in x,y 

The tensor consists of 28 = 256 components: 

even parity e+: xxxxxxxx+; (yyyyyyx)x +, 7; 

(yyyyyxx)y +, 21; (yyyyxxx)x  +, 35 (37) 

even parity e-:  x x x x x x x x - ;  (yyyyyyx) x - ,  7; 

(yyyyyxx) y- ,  21; (yyyyxxx) x - ,  35 (38) 

odd parity e + :xxxxxxxy+; (yyyyyyx)y +, 7; 

(yyyyyxx) x +, 21; (yyyyxxx) y+, 35 (39) 

odd parity e- : xxxxxxxy - ;  (yyyyyyx)y- ,  7; 

(yyyyyxx) x - ,  21; (yyyyxxx) y- ,  35.(40) 
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The method is applied only to the two even-parity (II) 2 symmetrized sub-tensors and the correspondence (11) ( a ) y y y y y x x y - = c ,  x x x x x x x x - +  c ~ y y y y y p 3 c x - +  c ~ ) ) ) y x y y x -  

is used to obtain the results for the odd-parity ones. ~ ~ ~ 

E v e n  p a r i t y  c + s u b t e n s o r  

(I) Invariants Re( . . . .  + + +) +, 35. 

Independent components ( y y y y x x x )  x +, 35.  

(II) 
35 

(a) x x x x x x x x  + = c ~ 2 2 2 x  + 

[ 1 ] = c[ 3 ] (from Re . . . . .  

35 
x x x x x x x x  + = ~ yyy)YcYc2x + 

15 
(b) yy~,v.vy.~x÷= c, y ) ~ x x ÷  + c ~ y x ÷  

=e l  + ~ om R e - - -  

• t5 20 

y y y y y y x x  ÷ = ~ ) )pp icxx  ÷ -- I ppp~dcYcyx ÷ 

t- + + + ) .  

+++~o +++-- 

5 10 

(c) y y y y y x x y  + = c I ) ) ) f i Y c x x x  + + c 2 Yc.~Yc))yyx + 

2O 

+ c3 Y'))2Ycxy_x+. * 

We use the (unusual) permutational equivalence of the 
independent components over all six indices, and do not 
use the numerical representation: 

y y y y y x x y  + = P 6s Y Y Y Y y y x x  + 

15 20 
= ~y,)y,y,  i c x x ~ +  - ~ y , y , ) ~ i c x y ~ +  

5 10 
= ~f i f i f i f i2xxx + + ~ YJJcfi.~yyx + 

2O 

-~))):~:?xyx+, 
where P6s stands for the exchange permutation of the 
sixth and eighth indices. 

E v e n - p a r i t y  c -  s u b t e n s o r  

(I) Invariants Re( ~-)-, 7; 

Re + + + + + + + - .  

Independent components ( y y y y y y x ) x - ,  7; 

X X X X X X X X - .  

* S h o r t  b a r s  u n d e r  i nd i ce s  d e n o t e  s y m m e t r i z a t i o n  o n  t h e s e  

i n d i c e s  (see  I, p. 543 ,  u p p e r  f o o t n o t e  "t'). 

I--l] [ 1 ] I-!] [--i] tr Re + + + + + + + - -) 
1 = c j  I + c 2  + c3 om R e -  - + . 

L lJ L l.J \ Re - + 

2 5 
y y y y y x x y -  = ~ x x x x x x x x -  + l y y y y y f i 2 x -  - l ~ ) ) ) S c y y x -  

3 4 

(b) yyyyxxx~- = ~, x~xxxxxx- + c,  y y y y ) ~ 2 x -  + c3)))2yyyx- 

l = c~ + c ~  + c 3 o m  R e  - + . 

\ Re + 

3 ,I 
y y y y x x x x -  = I x x x x x x x x -  - l y y y y y y x _ x -  + tyyy_x_y.yyx- 

The complete expressions for the general tensor of rank 
8 are as follows: 

E v e n  p a r i t y  in x a n d  in y 

35 
x x x x x x x x  + = ]yyy~YdcYcx +, 1 (4 la) 

15 20 

t Y y y y y y x )  x + = ] @ ~ Y c Y c x )  x + --  ~ @ ~ 2 Y d c y )  x +, 7 

(42a) 

5 10 

( y y y y y x x  ) y+ = J @fififi Ycxx ) x + + l ( YcYcY@yyy ) x + 

2O 
- ]  ()))bb?x_y) x +, 21 (43a) 

2 
( y y y y y x x )  y -  = ~ x x x x x x x x -  + ~(yyyyy)Yc)  x -  

5 

--~(.f,)fifiYcyy) x-,  21 (44a) 
3 

( y y y y x x x )  x -  = ~ x x x x x x x x -  - -  ~(YYYY)')'YO x -  
4 

+ ~ O ) ~ Y c y y y ) x - ,  35. (45a) 

O d d  p a r i t y  in x a n d  in y 

35 
x x x x x x x y -  = :~fi.~y)?.~:.ry-, 1 (4 lb) 

15 20 
( y y y y y y x )  y -  = ~@fiyfiYcYcx) y -  --  ~@fi)x.~xy) y-, 7 (42b) 

5 10 

( y y y y y x x  ) x -  = - - ]  @~,fi) Ycxx ) y -  --  ] (.~.~:fifiyy) y-  
2O 

+ ~Ofifi.~.~x_y)y-, 21 (43b) 
2 

( y y y y y x x  ) x + = --~ x x x x x x x y  + --  ~(yyyyyfiYc ) y+ 

5 

+ ~(.f, fiS, fiYcyy) y+, 21 (44b) 

3 

( y y y y x x x )  y+ = I x x x x x x x y  + --  ](yyyyf~y, Yc) y+ 

4 

+ ~Oy, )Ycyyy)y  +, 35. (45b) 
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The final equations (41a) to (45b) are much simpler 
than the corresponding equations reported in I, Table 2, 
p. 549. One still has five equations for even parity in x 
and in y, and five for odd parity, but the number of 
terms on the right-hand side now ranges from 1 to 3 
rather than from 3 to 7 as before. 

Even parity c -  

From (35a) 

From (36a) 

CH2 = - - C H I .  

C166 = - - C l l  1" 

4. Particularization to third- and fourth-order elastic 
tensors in two dimensions 

We illustrate the effectiveness of the symmetrized 
components in particularizing the results for general 
tensors to physical tensors having additional sym- 
metry with respect to index permutations, by working 
out the third- and fourth-order elastic tensors in two 
dimensions. 

The process of particularization simply consists in 
replacing by a single component each of the com- 
ponents which are related through a symmetry index 
permutation of the physical tensor. 

For the elastic tensors we adopt the conventional 
notation: 

x x  - 1, yy  - 2, xy  =- 6. 

(A) Third-order elastic tensor in x ,y  

This is a physical tensor of rank 6 having additional 
symmetry with respect to index permutations in the 
first, second and third pairs of indices, and with respect 
to permutations of these pairs among themselves. 

By particularization of (12) to (15), we obtain the 
following 12 symmetrized components: 

even parity c+: cTu, c1+12, c+66 (46) 

even parity c-:  c]-11, ch2, c]-66 (47) 

odd parity c + • c+16, C1+26 , C6+66 (48) 

odd parity c- : ci-16, ci-26, c666. (49) 

By particularization of the general expressions (33a) to 
(36b) we obtain the following results: 

Even  pari ty  c + 

From (3 3a) 

= 1 + 8Ct66] c1-t-12 -I- 4C+66. C+ll "~[2Ci12 + = 

F rom (34a) 

C?l 2 =-½(4%6) + ½(2c+12 + 4c+66)= c+,= 

- - ~ ( C l l  2 -t- "~(Cl l  2 -t- 5C1-1-66)= c1-t-66 . C+66__ 1 + 3C+66)+1 + 

Odd parity c + 

From (35b) 

From (36b) 

C1+16 = Cl-t-16. 

% ,  = -c+,,, 

ct6 6 = -cI-FI6. 

Odd pari ty  c -  

c726 = c666 = 0 

by index permutation symmetry.  
Then from (33b) (or from 34b) 

Cll 6 : 0 .  

We have thus the following relations: 

C1+11 = C1-t-12 --{-- 4C1+16 ") 
c712 = cT66 = -cT11 

Cl+2, = eta, --  - c h ~  

Cll  6 = C126 = C66 6 = O. 

(50)  

(B) Fourth-order elastic tensor in x ,y  

This is a physical tensor of rank 8 having additional 
symmetry with respect to index permutations in the 
first, second, third and fourth pairs of indices, and with 
respect to permutations of these pairs among 
themselves• 

From (37) to (40) it has 20 components: 

even parity c+: c+1~1, c+122, c + + + + (51) 1222' C1266' C2266' C6666 

even parity c-: c]-ll 1, c]- m ,  c~-222, c1266, c2266, c6666 (52) 

odd parity c + c+116, + + + (53) • C2226 , C1226, C2666 

odd parity c- : c]116, c2226, c1226, c2666. ( 5 4 )  

From the general expressions (41a) to (45b) one 
obtains the following results: 
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Even  par i ty  c + 

From (4 la )  

+ 1 + 24C1+266 8C+666). C l l l l  = ~(3C1122 + + 

From (42a) 

+ 1 + 12C+266) 1 + /21222 = "3"(3Cl122 + - - ] ; (12C1266 + 8C6-F666) 

+ + 4 + 
C1222 C1122 + 2¢1+266 = - -  -JC6666. 

From (42a) 

1 + 10¢1+266 + 4C6+666) + = ~(/21122 + /22266 

1 + 14/2+266 --g(2C1122 + + 4C;666) 

+ + 2 + 
C2266 = C1266 + "JC6666. 

Equat ion  (43a) gives the same expressions for/21222 + and 
+ 

/22266" 

Even  par i ty  c -  

C1122 : C1266 : C6666 = 0 

by index permuta t ion  symmetry.  
F rom (44a) 

2 -- 4C2266 ) e1222 = .JCll l  I + ] (2C2266 ) 1 -- ---j'(C1222 + 

1 - -  
C 1 2 2 2  = "~C1111. 

From (44a) 

= 2 -- 2 -- C2266) .~(5/22266 ) C2266 "J'Cllll + ~(C1222 + 

1 - -  1 - -  1 - -  
C 2 2 6 6  = -J'Cllll + "J'C1222 ~--- ~ 'CIlII .  

Equat ion  (45a) can only give expressions for c~-122, 
c~-266, c~666 which we know to be zero. 

Odd pari ty  c + 
+ + 

C2226 = e l l l 6 .  

From (44b) 
+ 2 + 2 + 1 + 

C1226 = - - ' J C l l l 6  - -  -3-(2¢2226) + 3"(56'2226) 

+ 1 + 
C1226 = - - ' J C l l l 6 .  

From (44b) 
2 + 1 + 

+ 2 + .j(2C2226 ) + ~.(5/22226 ) C2666 = - - J C l l l 6  - -  

+ 1 + 
C2666 = - - - JCl l l6 .  

Equat ion  (45b) gives the same expressions for c1226 + and 
+ 

e2666. 

Odd pari ty  c -  

C2226 = - - C l l l 6 .  

From (4 lb) 

Cl l l6  = ~(15/21226 + 20¢2666) .  

From (42b) 

C2226 = ~(3C1226 + 12C2666)--~(12C1226 + 8C2666) 

8 - 
C2226 = --C1226 + "JC2666. 

Thus 

/22226 = --/21116 = 0~ 

and 

C1226 = C2666 = O. 

Equat ion  (43b) can only give relations between e1226 
and c2666 which we know to be zero. 

We have thus the following relations: 
+ + 8 + 

/21111 = /21122 + 8C+266 + ~C6666 

+ + 4 + 
C1222 C1122 + 2¢+266 = - -  "J/26666 

+ + 2 + 
C2266 = C1266 + ~C6666 

/21122 = C1266 = /26666 = 0 

1 - -  
C 1 2 2 2  = £?2266 = ~ C l l l l  

+ + 
C2226 = C1116 

+ + 1 + 
£71226 = /22666 = --~C1116 

C1116 = C2226 = C1226 = C2666 = 0 .  

(55) 

The usual relations among  the s tandard components  of  
the elastic tensors considered follow from (50) and (55) 
by using (1) and (2). In particular,  one rederives the 
relations for the third-order elastic tensor first given by 
Fumi (1952), and those for the fourth-order  elastic 
tensor reported by Brendel (1979) and by Markenscof f  
(1979) ,*t  as well as those reported by Chung  & Li 
(1974) , t  who treated a non-tensorial  array for fourth- 
order elasticity. 

*Both Brendel (1979) (who treated the tensor in all the 
crystallographic groups and the isotropic body) and Markenscoff 
(1979) (who treated the tensor in all trigonal and hexagonal groups) 
recurred systematically to an electronic computer. For the ease of 
treatment of general or physical tensors in groups different from 
3(3:) see, however, Fumi & Ripamonti (1980b). 

5" The scheme by Markenscoff (1979) for group 3(3z) unfor- 
tunately contains a misprint in the expression of c~256: this should 
read/21256 = ~(/21114 + 3/21124)" The errors in the results of Chung & 
Li (1974) for group 3(3~) have already been listed in I, footnote to 
§ 5. Brendel (1979) states that Krishnamurty's (1963) invariance 
equations for the isotropic body are in error: in fact, they are 
correct for the non-tensorial array for which they were written, the 
same as studied by Chung & Li (1974) (see II, Appendix C). 
Brendel also quotes Gagnepain & Besson (1975) without mention- 
ing that their results for groups 32, 3m, 3m are grossly in error, as 
they give a wrong number of independent components (23 instead 
of 28). 
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